教授 博士生导师 硕士生导师
性别: 男
毕业院校: 大连理工大学
学位: 博士
所在单位: 生物医学工程学院
学科: 信号与信息处理. 生物医学工程
办公地点: 大连理工大学创新园大厦
联系方式: 电子邮箱:qiutsh@dlut.edu.cn; 电话:15898159801
电子邮箱: qiutsh@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2017-10-01
发表刊物: DIGITAL SIGNAL PROCESSING
收录刊物: Scopus、SCIE、EI
卷号: 69
页面范围: 11-21
ISSN号: 1051-2004
关键字: Compressive sensing; Nonlinear regression; A*OMP; Cost model
摘要: A number of tree search based methods have recently been utilized for compressive sensing signal reconstruction. Among these methods, a heuristic algorithm named A* orthogonal matching pursuit (A*OMP) follows best-first search principle and employs dynamic cost model which makes sparse reconstruction exceptionally excellent. Since the algorithm performance of A*OMP relies heavily on preset parameters in the cost model and the estimation of these preset parameters requires a large number of experiments, there is room for improvement in A*OMP. In this paper, an improved algorithm referred to as Nonlinear Regression A*OMP (NR-A*OMP) is proposed which is built on the residue trend to avoid the estimation procedure. This method is inspired by the fact that the residue is correlated closely to the measurement matrix. The residue trend reflects the characteristics of nonlinear regression with the increasing of sparsity K. In addition, restricted isometry property (RIP) based general conditions are introduced to ensure the effectiveness and practicality of the algorithm. Numerical simulations demonstrate the superiority of NR-A*OMP in both reconstruction rate and normalized mean squared error. Results indicate that the performance of NR-A*OMP can become nearly equal to or even better than that of A*OMP with perfect preset parameters. (C) 2017 Elsevier Inc. All rights reserved.