教授 博士生导师 硕士生导师
性别: 男
毕业院校: 大连理工大学
学位: 博士
所在单位: 生物医学工程学院
学科: 信号与信息处理. 生物医学工程
办公地点: 大连理工大学创新园大厦
联系方式: 电子邮箱:qiutsh@dlut.edu.cn; 电话:15898159801
电子邮箱: qiutsh@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2020-01-01
发表刊物: IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT
收录刊物: SCIE
卷号: 69
期号: 9
页面范围: 5981-5983
ISSN号: 0018-9456
关键字: Broadcasting; Training; Logic gates; Recurrent neural networks; Wireless communication; Feature extraction; Channel state information; Broadcasting identification; long short-term memory (LSTM); recurrent neural network (RNN)
摘要: Radio broadcasting plays an important role in our daily life. Meanwhile, with the development of wireless communications, the application of software-defined radio platforms gives rise to cheap and easy design of illegal broadcasting stations. These unauthorized broadcasting stations sometimes illegally occupy licensed frequency band, especially associated with amateur radios and unlicensed personal communication devices and services. These unauthorized broadcasting stations may severely interfere with the authorized broadcasting and further disrupt the management of spectrum resource in civil applications, such as emergency services and air traffic control. However, it still remains a challenging task to automatically and effectively identify the unauthorized broadcasting in complicated electromagnetic environments. Aiming at developing an intelligent and efficient unauthorized broadcasting identification system, in this article, a novel identification approach is proposed based on long short-term memory (LSTM) recurrent neural network (RNN), and LabVIEW software. In our approach, first, a series of LabVIEW applications are developed to drive USRP 2930s for the acquisition of broadcasting signals. Then, the LSTM identification network is proposed to recognize unauthorized broadcasting. Through the special gate structure inside, the proposed LSTM framework can effectively extract the distinguishing features, such as channel state information and RF device fingerprinting. Simulation results show that the proposed LSTM-based approach perform better than other contrastive methods, especially in identification accuracy. Implementation results also demonstrate that the proposed method has an outstanding unauthorized broadcasting identification performance with a high accuracy, i.e., identify the unauthorized broadcasting signals with 99.83% accuracy at the licensed frequency of 107.8 MHz, in realistic electromagnetic environments.