大连理工大学  登录  English 
邱天爽
点赞:

教授   博士生导师   硕士生导师

性别: 男

毕业院校: 大连理工大学

学位: 博士

所在单位: 生物医学工程学院

学科: 信号与信息处理. 生物医学工程

办公地点: 大连理工大学创新园大厦

联系方式: 电子邮箱:qiutsh@dlut.edu.cn; 电话:15898159801

电子邮箱: qiutsh@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 中文主页 >> 科学研究 >> 论文成果
Robust visual tracking via incremental low-rank features learning

点击次数:

论文类型: 期刊论文

发表时间: 2014-05-05

发表刊物: NEUROCOMPUTING

收录刊物: SCIE、EI、Scopus

卷号: 131

页面范围: 237-247

ISSN号: 0925-2312

关键字: Low-rank features; Visual tracking; Incremental subspace learning; Occlusion detection

摘要: In this paper, we address robust visual tracking as an incremental low-rank features learning problem in a particle filter framework. Our new algorithm first learns the observation model by extracting low-rank features and the corresponding subspace basis of the object from the initial several frames. Then the low-rank features and sparse errors can be incrementally updated using an l(1) norm minimization model. We show that the proposed strategy is actually an online extension of Robust PCA (RPCA). Thus compared with previous methods, which directly learn subspace from corrupted observations, our model can incrementally pursuit the low-rank features for the target and detect the occlusions by the sparse errors. Furthermore, the proposed reformulation of RPCA can also be considered as an illumination study on extending batch-mode low-rank techniques for more general online time series analysis tasks. Experimental results on various challenging videos validate the superiority over other state-of-the-art methods. (C) 2013 Elsevier B.V. All rights reserved.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学