教授 博士生导师 硕士生导师
性别: 男
毕业院校: 大连理工大学
学位: 博士
所在单位: 生物医学工程学院
学科: 信号与信息处理. 生物医学工程
办公地点: 大连理工大学创新园大厦
联系方式: 电子邮箱:qiutsh@dlut.edu.cn; 电话:15898159801
电子邮箱: qiutsh@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2013-01-01
发表刊物: JOURNAL OF MATHEMATICAL IMAGING AND VISION
收录刊物: SCIE、EI、Scopus
卷号: 45
期号: 1
页面范围: 46-54
ISSN号: 0924-9907
关键字: Image denoising; Joint sparse representation; Sparse noise; KSVD
摘要: This paper addresses the recovery of original images from multiple copies corrupted with the noises, which can be represented sparsely in some dictionary. Sparse representation has been proven to have strong ability to denoise. However, it performs suboptimally when the noise is sparse in some dictionary. A novel joint sparse representation (JSR)-based image denoising method is proposed. The images can be recovered well from multiple noisy copies. All copies share a common component-the image, while each individual measurement contains an innovation component-the noise. Our method can separate the common and innovation components, and reconstruct the images with the sparse coefficients and the dictionaries. Experiment results show that the performance of the proposed method is better than that of other methods in terms of the metric and the visual quality.