教授 博士生导师 硕士生导师
性别: 男
毕业院校: 大连理工大学
学位: 博士
所在单位: 生物医学工程学院
学科: 信号与信息处理. 生物医学工程
办公地点: 大连理工大学创新园大厦
联系方式: 电子邮箱:qiutsh@dlut.edu.cn; 电话:15898159801
电子邮箱: qiutsh@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2009-12-01
发表刊物: COMPUTERIZED MEDICAL IMAGING AND GRAPHICS
收录刊物: SCIE、EI、PubMed、Scopus
卷号: 33
期号: 8
页面范围: 588-592
ISSN号: 0895-6111
关键字: NN classifier; Texture feature; Hepatocellular carcinoma; Animal; Superparamagnetic iron oxide; Magnetic resonance imaging
摘要: In this paper, a computer-aided diagnostic (CAD) system for the classification of rat liver lesions from MR imaging is presented. The proposed system consists of two modules: the feature extraction and the classification modules. 40 rats are used for hepatocellular carcinoma (HCC) induction with Diethylnitrosamine via drinking water. After Resovist is administrated by tail vein the animals are scanned by a 1.5-T MR scanner with T2-weighted FRFSE sequence. SPIO-enhanced images of 106 nodules (RNs: 24, HCCs: 82) are acquired, and 161 regions of interest (ROIs) are taken from the MR images. Six parameters of texture characteristics including Angular Second Moment, Contrast, Correlation, Inverse Difference Moment, Entropy, and Variance of 161 ROIs are calculated and assessed by gray-level co-occurrence matrices, then fed into a BP neural network (NN) classifier to classify the liver tissue into two classes: cirrhosis and HCC. Difference of each texture parameter between cirrhosis and HCC group is significant. The accuracy of classification of HCC nodules from cirrhosis is 91.67%. It indicates the ANN classifier based on texture is effective for classifying HCC nodules from cirrhosis on rat SPIO-enhanced imaging. (C) 2009 Elsevier Ltd. All rights reserved.