![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:Professor
性别:男
毕业院校:奥地利University of Graz
学位:博士
所在单位:环境学院
学科:环境工程. 环境科学. 水科学与技术
办公地点:大连理工大学环境学院
联系方式:0411-84706140
电子邮箱:quanxie@dlut.edu.cn
Deposition and separation of W and Mo from aqueous solutions with simultaneous hydrogen production in stacked bioelectrochemical systems (BESs): Impact of heavy metals W(VI)/Mo(VI) molar ratio, initial pH and electrode material.
点击次数:
论文类型:期刊论文
发表时间:2018-01-01
发表刊物:Journal of hazardous materials
收录刊物:PubMed、SCIE、EI
卷号:353
页面范围:348-359
ISSN号:1873-3336
关键字:Bioelectrochemical system; Microbial fuel cell; Microbial electrolysis cells; W and Mo deposition; Hydrogen production
摘要:The deposition and separation of W and Mo from aqueous solutions with simultaneous hydrogen production was investigated in stacked bioelectrochemical systems (BESs) composed of microbial electrolysis cell (1#) serially connected with parallel connected microbial fuel cell (2#). The impact of W/Mo molar ratio (in the range 0.01 mM : 1 mM and vice-versa), initial pH (1.5 to 4.0) and cathode material (stainless steel mesh (SSM), carbon rod (CR) and titanium sheet (TS)) on the BES performance was systematically investigated. The concentration of Mo(VI) was more influential than W(VI) in determining the rate of deposition of both metals and the rate of hydrogen production. Complete metal recovery was achieved at equimolar W/Mo ratio of 0.05 mM : 0.05 mM. The rates of metal deposition and hydrogen production increased at acidic pH, with the fastest rates at pH 1.5. The morphology of the metal deposits and the valence of the Mo were correlated with W/Mo ratio and pH. CR cathodes (2#) coupled with SSM cathodes (1#) achieved a significant rate of hydrogen production (0.82 ± 0.04 m3/m3/d) with W and Mo deposition (0.049 ± 0.003 mmol/L/h and 0.140 ± 0.004 mmol/L/h (1#); 0.025 ± 0.001 mmol/L/h and 0.090 ± 0.006 mmol/L/h (2#)). Copyright © 2018 Elsevier B.V. All rights reserved.
上一条:Removal of binary Cr(VI) and Cd(II) from the catholyte of MFCs and determining their fate in EAB using fluorescence probes.
下一条:Constructing BiVO4-Au@CdS photocatalyst with energic charge-carrier separation capacity derived from facet induction and Z-scheme bridge for degradation of organic pollutants