全燮

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:Professor

性别:男

毕业院校:奥地利University of Graz

学位:博士

所在单位:环境学院

学科:环境工程. 环境科学. 水科学与技术

办公地点:大连理工大学环境学院

联系方式:0411-84706140

电子邮箱:quanxie@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Removal of binary Cr(VI) and Cd(II) from the catholyte of MFCs and determining their fate in EAB using fluorescence probes.

点击次数:

论文类型:期刊论文

发表时间:2018-01-01

发表刊物:Bioelectrochemistry (Amsterdam, Netherlands)

收录刊物:PubMed、SCIE、EI

卷号:122

页面范围:61-68

ISSN号:1878-562X

关键字:Microbial fuel cell; Electrochemically active bacteria; Fluorescence probe; Cr(VI); Cd(II)

摘要:Electrochemically active bacteria (EAB) on the cathodes of microbial fuel cells (MFCs) can remove metals from the catholyte, but the fate of metals in the cells has not been examined in the presence of multiple metals. To study the relative uptake and fate of Cr(VI) and Cd(II) in cells, fluorescence probes were used to determine the amount and location of these metals in four different EAB on the biocathodes of MFCs. When both metals were present, less Cr(VI) was removed but Cd(II) uptake was not appreciably affected. As a consequence, the imaging of Cr(III) ions was lower than that using individual fluorescence probes for single Cr(III) ions in each EAB, compared to negligible changes in images for Cd(II) ions in the presence of either both Cr(VI) and Cd(II) or Cd(II) alone. The concentration of Cr(III) ions in the cells consistently increased over time, while that of Cd(II) ions decreased following an initial increase. Cr or Cd uptake could not be detected using a scanning electron microscope coupled with an energy dispersive spectrometer, reflecting the high sensitivities of the fluorescence probes to these metals. More chromium was found in the cytoplasm while cadmium preferentially accumulated in the cell envelope. These results demonstrate that the fate of chromium and cadmium in EAB was different when both metals were present, compared to controls containing a single metal. These results provide direct and visible results on the fate of the metals in the EAB when these metals are co-present in the catholyte of MFCs. Copyright © 2018 Elsevier B.V. All rights reserved.