个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:东亚大学
学位:博士
所在单位:机械工程学院
学科:机械设计及理论
办公地点:大方楼8021#
电子邮箱:sxg@dlut.edu.cn
Recurrent neural networks for real-time prediction of TBM operating parameters
点击次数:
论文类型:期刊论文
发表时间:2019-02-01
发表刊物:AUTOMATION IN CONSTRUCTION
收录刊物:SCIE、Scopus
卷号:98
页面范围:225-235
ISSN号:0926-5805
关键字:Tunnel boring machines; Recurrent neural networks; Real-time prediction; Operating parameter
摘要:With tunnel boring machines (TBMs) widely used in tunnel construction, the adaptable adjustment of TBM operating status has become a research focus. Since the prediction of tunnel geological conditions is still challenging before excavation, the prediction of important TBM operating parameters plays an important role in the research on TBM adaptable adjustment. In this paper, we use three kinds of recurrent neural networks (RNNs), including traditional RNNs, long-short term memory (LSTM) networks and gated recurrent unit (GRU) networks, to deal with the real-time prediction of TBM operating parameters based on TBM in-situ operating data. The experimental results show that the proposed three kinds of RNN-based predictors can provide accurate prediction values of some important TBM operating parameters during next period including the torque, the velocity, the thrust and the chamber pressure. We also make a comparison with several classical regression models (e.g., support vector regression (SVR), random forest (RF) and Lasso) which actually cannot act as real-time predictors in a real sense, and the comparative experiments show that the proposed RNN-based predictors outperform the regression models in most cases. The feasibility of RNNs for the real-time prediction of TBM operating parameters indicates that RNNs can afford the analysis and the forecasting of the time-continuous in-situ data collected from various construction equipments.