宋学官
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:东亚大学
学位:博士
所在单位:机械工程学院
学科:机械设计及理论
办公地点:大方楼8021#
电子邮箱:sxg@dlut.edu.cn
扫描关注
- [1]宋学官, 梁朋伟, 张帅, 庞勇, 龚壮壮, Yang, Kaike, Zhang, Junwei, Yuan, Zhaoting.A modeling method for the opto-mechanical coupling problems of photoelectric detection and tracki...[J],STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION,2024,67(9)
- [2]付涛, 张天赐, 崔允浩, 宋学官.深度学习增强的智能矿用电铲挖掘轨迹跟踪控制[J],Journal of Mechanical Engineering,2024,60(16):357-366
- [3]严粤飞, 王龙杨, 徐鹏颖, 王艳, 陈竞覃, 王志海, 宋学官, 翁俊, 王从思.基于SCNs的大口径陆基有源相控阵天线变形重构方法[J],电子机械工程,2024,40(05):13-21
- [4]庞勇, 张帅, 梁朋伟, 王沐晨, 龚壮壮, 宋学官, 阚子云.Surrogate model uncertainty quantification for active learning reliability analysis[J],Chinese Journal of Aeronautics,2024
- [5]王昊, 宋学官, 张超.Multi-fidelity Data Fusion Mechanism for Digital Twins via Internet of Thing[J],IEEE Internet Computing,2024
- [6]梁朋伟, 庞勇, 张帅, 王沐晨, 李清野, 任博, 阚子云, 宋学官.光-机-热-流多场耦合建模方法及其在激光传输系统中的应用[J],机械工程学报,2024
- [7]杨亮亮, 朱泓宇, Lai, Xiaonan, 何西旺, 阚子云, 宋学官.A Newton-Cotes-based online acceleration signal fast processing approach to obtain displacement f...[J],Measurement: Journal of the International Measurement Confederation,2024,242
- [8]龙秀华, 胡正国, 付涛, 连楷研, 宋学官.基于非对称七段S型曲线的矿用电铲轨迹优化[J],机械工程学报,2024
- [9]张建康, 刘富文, 郭冠辰, 张帅, 宋学官, 孙田, 李子陆.基于多保真代理模型的塔机臂架结构优化[J],机电工程,2024
- [10]李鹏, 王一棠, 杨亮亮, 王佳茜, 周佩泉, 宋学官, 郑跃滨.数据驱动的混凝土泵车臂架疲劳载荷谱编制[J],中国机械工程,2024,35(10):1881-1889
- [11]庞勇, 胡正国, 张帅, 郭冠辰, 宋学官, 阚子云.Co-design of an unmanned cable shovel for structural and control integrated optimization: A highl...[J],APPLIED ENERGY,2024,376
- [12]王一棠, 刘富文, 杨亮亮, 庞勇, 宋学官.Bi-fidelity surrogate modeling via scaled correlation construction and penalty minimization[J],STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION,2024,67(10)
- [13]韩忠华, 龙腾, 宋学官, 张科施.飞行器多学科优化设计研究现状与展望[J],2024,2(4):26-57
- [14]刘富文, 龚壮壮, 马新奥, Zhang, Yanfeng, 宋学官.Based on the combination of fluid-solid interaction mechanism model and surrogate model for peris...[J],ADVANCED ENGINEERING INFORMATICS,2024,62
- [15]何西旺, 杨亮亮, 庞勇, 阚子云, 宋学官.PSDM: A parametrized structural dynamic modeling method based on digital twin for performance pre...[J],ENGINEERING STRUCTURES,2024,316
- [16]Guo, Junlang, 宋学官, Liu, Qiang, Wang, Lihui, Leng, Jiewu, Zhao, Leon, Zhou, Xueliang, Yuan, Yu, Lu, Yuqian, Mourtzis, Dimitris, Qi, Qinglin, Huang, Sihan.Industrial metaverse towards Industry 5.0: Connotation, architecture, enablers, and challenges[J],JOURNAL OF MANUFACTURING SYSTEMS,2024,76:25-42
- [17]Zhang, Shuai, 庞勇, 李清野, 李昆鹏, 宋学官.Multi-type data fusion via transfer learning surrogate modeling and its engineering application[J],Information Sciences,2024,677
- [18]张帅, 庞勇, 刘富文, 王沐晨, 阚子云, 宋学官.Random projection enhancement: A Novel method for improving performance of surrogate models[J],SWARM AND EVOLUTIONARY COMPUTATION,2024,89
- [19]柳宗琦, 宋学官, 杨洁, 张超, Tao, Dacheng.Generative adversarial networks for multi-fidelity matrix completion with massive missing entries[J],INFORMATION FUSION,2024,111
- [20]李海洋, 易龙腾, 冷初阳, 钟雅涵, 洪嘉祺, 宋学官, Hao, Guangbo.Design of a Three-Axis Force Sensor Using Decoupled Compliant Parallel Mechanisms[J],IEEE Sensors Journal,2024,24(15):23585-23598