宋学官

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:东亚大学

学位:博士

所在单位:机械工程学院

学科:机械设计及理论

办公地点:大方楼8021#

电子邮箱:sxg@dlut.edu.cn

扫描关注

码过的文

当前位置: 宋学官 >> 科研 >> 码过的文

DFIG Machine Design for Maximizing Power Output Based on Surrogate Optimization Algorithm View Document

点击次数:

发布期刊链接:http://xueshu.baidu.com/s?wd=paperuri%3A%2817dca0118c77d49b7ec2fb83ed64eef9%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%

发表时间:2015-04-02

发表刊物:IEEE Transactions on Energy Conversion

收录刊物:SCI、EI

学科门类:工学

一级学科:机械工程

卷号:3

期号:30

页面范围:1-9

关键字:Rotors, Stator windings, Optimization, Windings, Wind speed, Wind turbines

摘要:This paper presents a surrogate-model-based optimization of a doubly-fed induction generator (DFIG) machine winding design for maximizing power yield. Based on site-specific wind profile data and the machine's previous operational performance, the DFIG's stator and rotor windings are optimized to match the maximum efficiency with operating conditions for rewinding purposes. The particle swarm optimization-based surrogate optimization techniques are used in conjunction with the finite element method to optimize the machine design utilizing the limited available information for the site-specific