个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:东亚大学
学位:博士
所在单位:机械工程学院
学科:机械设计及理论
办公地点:大方楼8021#
电子邮箱:sxg@dlut.edu.cn
A HYBRID MODEL TO ANALYZE THE FLUID-STRUCTURE INTERACTION PHENOMENON OF A RELIEF SYSTEM AND EXPERIMENTAL VALIDATION
点击次数:
论文类型:会议论文
发表时间:2019-01-01
收录刊物:CPCI-S
摘要:As one essential component of a pressurized system, a relief valve is used to guarantee the pressure within a prescribed range. But in practical engineering, pressure fluctuation caused by the operation of a relief valve will travel along the pipeline and couple with the motion of the valve, which might result in malfunction of the valve and the system. In order to investigate the fluid-structure interaction (FSI) phenomenon, a hybrid model combining the method of characteristics (MOC) and computational fluid dynamics (CFD) method is proposed. In the hybrid FSI model, the characteristics of pressure resource is modeled using the performance curves, the compressible gas transmitting in the pipe is calculated by one-dimensional MOC, and the air flow in the valve as well as the valve motion is simulated by a two-dimensional CFD model. To validate the hybrid model, 1:1 scaled test rig is conducted. The compared results show that the hybrid model not only can accurately capture the pressure fluctuation in straight pipeline induced by the closure of the valve but also can accurately predict the forms of the valve motion.