宋学官

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:东亚大学

学位:博士

所在单位:机械工程学院

学科:机械设计及理论

办公地点:大方楼8021#

电子邮箱:sxg@dlut.edu.cn

扫描关注

码过的文

当前位置: 宋学官 >> 科研 >> 码过的文

A multi-fidelity surrogate model based on support vector regression

点击次数:

论文类型:期刊论文

发表时间:2020-06-01

发表刊物:STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION

收录刊物:SCIE

卷号:61

期号:6

页面范围:2363-2375

ISSN号:1615-147X

关键字:Multi-fidelity surrogate; Support vector regression; Simulation

摘要:Computational simulations with different fidelities have been widely used in engineering design and optimization. A high-fidelity (HF) model is generally more accurate but also more time-consuming than the corresponding low-fidelity (LF) model. To take advantage of both HF and LF models, a number of multi-fidelity surrogate (MFS) models based on different surrogate models (e.g., Kriging, response surface, and radial basis function) have been developed, but MFS models based on support vector regression are rarely reported. In this paper, a new MFS model based on support vector regression, which is named Co_SVR, is developed. In the proposed method, the HF and LF samples are mapped into a high-dimensional feature space through a kernel function, and then, a linear model is utilized to evaluate the relationship between inputs and outputs. The root mean square error (RMSE) of HF responses of interest is used to express the training error of Co_SVR, and a heuristic algorithm, grey wolf optimizer, is used to obtain the optimal parameters. For verification, the Co_SVR model is compared with four popular multi-fidelity surrogate models and four single-fidelity surrogate models through a number of numerical cases and a pressure relief valve design problem. The results show that Co_SVR provides competitive performance in both numerical cases and the practical case. Moreover, the effects of key factors (i.e., the correlation between HF and LF models, the cost ratio of HF to LF models, and the combination of HF and LF samples) on the performance of Co_SVR are also explored.