个人信息Personal Information
副教授
博士生导师
硕士生导师
性别:男
毕业院校:吉林大学
学位:博士
所在单位:数学科学学院
学科:概率论与数理统计. 金融数学与保险精算
办公地点:数学科学学院5楼
电子邮箱:wangxg@dlut.edu.cn
Estimation and variable selection in partial linear single index models with error-prone linear covariates
点击次数:
论文类型:期刊论文
发表时间:2014-01-01
发表刊物:STATISTICS
收录刊物:SCIE
卷号:48
期号:5
页面范围:1048-1070
ISSN号:0233-1888
关键字:ancillary variables; error-prone; local linear smoothing; profile least square method; SCAD; single-index
摘要:We study the estimation and variable selection for a partial linear single index model (PLSIM) when some linear covariates are not observed, but their ancillary variables are available. We use the semiparametric profile least-square based estimation procedure to estimate the parameters in the PLSIM after the calibrated error-prone covariates are obtained. Asymptotic normality for the estimators are established. We also employ the smoothly clipped absolute deviation (SCAD) penalty to select the relevant variables in the PLSIM. The resulting SCAD estimators are shown to be asymptotically normal and have the oracle property. Performance of our estimation procedure is illustrated through numerous simulations. The approach is further applied to a real data example.