王晓光

个人信息Personal Information

副教授

博士生导师

硕士生导师

性别:男

毕业院校:吉林大学

学位:博士

所在单位:数学科学学院

学科:概率论与数理统计. 金融数学与保险精算

办公地点:数学科学学院5楼

电子邮箱:wangxg@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Estimation and variable selection in partial linear single index models with error-prone linear covariates

点击次数:

论文类型:期刊论文

发表时间:2014-01-01

发表刊物:STATISTICS

收录刊物:SCIE

卷号:48

期号:5

页面范围:1048-1070

ISSN号:0233-1888

关键字:ancillary variables; error-prone; local linear smoothing; profile least square method; SCAD; single-index

摘要:We study the estimation and variable selection for a partial linear single index model (PLSIM) when some linear covariates are not observed, but their ancillary variables are available. We use the semiparametric profile least-square based estimation procedure to estimate the parameters in the PLSIM after the calibrated error-prone covariates are obtained. Asymptotic normality for the estimators are established. We also employ the smoothly clipped absolute deviation (SCAD) penalty to select the relevant variables in the PLSIM. The resulting SCAD estimators are shown to be asymptotically normal and have the oracle property. Performance of our estimation procedure is illustrated through numerous simulations. The approach is further applied to a real data example.