个人信息Personal Information
副教授
博士生导师
硕士生导师
性别:男
毕业院校:吉林大学
学位:博士
所在单位:数学科学学院
学科:概率论与数理统计. 金融数学与保险精算
办公地点:数学科学学院5楼
电子邮箱:wangxg@dlut.edu.cn
Tuning Parameter Selector for the Penalized Likelihood Method in Multivariate Generalized Linear Models
点击次数:
论文类型:期刊论文
发表时间:2013-11-02
发表刊物:COMMUNICATIONS IN STATISTICS-THEORY AND METHODS
收录刊物:EI、SCIE、Scopus
卷号:42
期号:21
页面范围:3873-3888
ISSN号:0361-0926
关键字:Canonical link function; Model selection; Multivariate generalized linear model; Smoothly clipped absolute deviation; Tuning parameter; 62J07; 62J12
摘要:Variable selection is fundamental to high-dimensional multivariate generalized linear models. The smoothly clipped absolute deviation (SCAD) method can solve the problem of variable selection and estimation. The choice of the tuning parameter in the SCAD method is critical, which controls the complexity of the selected model. This article proposes a criterion to select the tuning parameter for the SCAD method in multivariate generalized linear models, which is shown to be able to identify the true model consistently. Simulation studies are conducted to support theoretical findings, and two real data analysis are given to illustrate the proposed method.