个人信息Personal Information
副教授
博士生导师
硕士生导师
性别:男
毕业院校:吉林大学
学位:博士
所在单位:数学科学学院
学科:概率论与数理统计. 金融数学与保险精算
办公地点:数学科学学院5楼
电子邮箱:wangxg@dlut.edu.cn
Adaptive Lasso Variable Selection for the Accelerated Failure Models
点击次数:
论文类型:期刊论文
发表时间:2011-01-01
发表刊物:COMMUNICATIONS IN STATISTICS-THEORY AND METHODS
收录刊物:Scopus、SCIE
卷号:40
期号:24
页面范围:4372-4386
ISSN号:0361-0926
关键字:Adaptive lasso; BIC; Oracle property; Variable selection; Weighted least squares
摘要:This article considers the adaptive lasso procedure for the accelerated failure time model with multiple covariates based on weighted least squares method, which uses Kaplan-Meier weights to account for censoring. The adaptive lasso method can complete the variable selection and model estimation simultaneously. Under some mild conditions, the estimator is shown to have sparse and oracle properties. We use Bayesian Information Criterion (BIC) for tuning parameter selection, and a bootstrap variance approach for standard error. Simulation studies and two real data examples are carried out to investigate the performance of the proposed method.