![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:Professor, Head of Lab of Intelligent System
其他任职:自动化技术研究所所长
性别:男
毕业院校:英国杜伦大学
学位:博士
所在单位:控制科学与工程学院
学科:控制理论与控制工程. 模式识别与智能系统. 检测技术与自动化装置
办公地点:智能系统实验室
课题组网址http://lis.dlut.edu.cn/
联系方式:0411-84709010 wangzl@dlut.edu.cn
电子邮箱:wangzl@dlut.edu.cn
A Feature Extraction Method for Human Action Recognition using Body-Worn Inertial Sensors
点击次数:
论文类型:会议论文
发表时间:2015-05-06
收录刊物:EI、CPCI-S、Scopus
页面范围:576-581
关键字:robust linear discriminant analysis; action recognition; principal component analysis; random projection; dimension reduction efficiency
摘要:This paper proposes a new feature extraction method named as robust linear discriminant analysis (RLDA) in human action recognition using body-worn inertial sensors. The new method is based on the classical method-linear discriminant analysis(LDA), and it can eliminate certain defect in LDA. In this paper, firstly, a popular technique of dimension reduction called principal component analysis (PCA) is used to process the data, and then the eigenvalues of within-class scatter matrix can be reestimated, from which the new projection matrix can be obtained. We use the public database called Wearable Action Recognition Database to validate our method. The experimental results can illustrate that the method of this paper is feasible and effective. Especially for classification algorithm SVM, the recognition rate can reach 99.02%. At the same time, a term called dimension reduction efficiency (DRE) is defined, which is used to evaluate two popular dimension reduction techniques including PCA and random projection(RP) in the final experiment of this paper.