

教授 博士生导师 硕士生导师
性别:男
毕业院校:中科院研究生院
学位:博士
所在单位:数学科学学院
学科:基础数学
应用数学
办公地点:数学楼411
电子邮箱:
开通时间: ..
最后更新时间:..
点击次数:
发布时间:2019-03-12
论文类型:期刊论文
发表时间:2017-04-01
发表刊物:SCIENCE CHINA-MATHEMATICS
收录刊物:Scopus、SCIE
卷号:60
期号:4
页面范围:637-650
ISSN号:1674-7283
关键字:Navier-Stokes equations; interior regularity criterion; BMO space; Besov space
摘要:Let u = (u (h), u (3)) be a smooth solution of the 3-D Navier-Stokes equations in a"e(3) x [0, T). It was proved that if u (3) a L (a)(0, T; (B)over dot, (p,q) (-1+3/p) (a"e(3))) for 3 < p,q < a and u (h) a L (a)(0, T; BMO-1(a"e(3))) with u (h)(T) a VMO-1(a"e(3)), then u can be extended beyond T. This result generalizes the recent result proved by Gallagher et al. (2016), which requires u a L (a)(0, T; (B)over dot, (p,q) (-1+3/p) (a"e(3))). Our proof is based on a new interior regularity criterion in terms of one velocity component, which is independent of interest.