教授 博士生导师 硕士生导师
性别: 男
毕业院校: 中科院研究生院
学位: 博士
所在单位: 数学科学学院
学科: 基础数学. 应用数学
电子邮箱: wendong@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2017-01-15
发表刊物: JOURNAL OF FUNCTIONAL ANALYSIS
收录刊物: SCIE
卷号: 272
期号: 2
页面范围: 776-803
ISSN号: 0022-1236
关键字: Energy identity; Harmonic map; Hopf differential
摘要: Let u(n) be a sequence of mappings from a closed Riemannian surface M to a general Riemannian manifold N. If u(n) satisfies
[GRAPHICS]
(|| del u(n) || L-2(M) + || T(u(n)) || Lp(M)) <= Alpha for some p > 1,
where T (u(n)) is the tension field of u(n), then the so called energy identity and neckless property hold during blowing up. This result is sharp by Parker's example, where the tension fields of the mappings from Riemannian surface are bounded in L-1 (M) but the energy identity fails. (C) 2016 Elsevier Inc. All rights reserved.