已经得到个称赞     给我点赞
  • 教师姓名:朱晓兵
  • 性别:
  • 电子邮箱:xzhu@dlut.edu.cn
  • 职称:副教授
  • 所在单位:化工海洋与生命学院
  • 学位:博士
  • 学科:化学工程. 物理化学
  • 毕业院校:中科院大连化学物理研究所
  • 曾获荣誉:辽宁省第二批“十百千高端人才引进工程”“百人”层次
  • 办公地点:大连理工大学氢能与环境催化中心、等离子体物理化学实验室
    Center for Hydrogen Energy and Environmental Catalysis, Laboratory of Plasma Physical Chemistry
    Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
论文成果
当前位置: 中文主页 >> 科学研究 >> 论文成果 >> Ozone catalytic o... >>同专业硕导
Ozone catalytic oxidation for ammonia removal from simulated air at room temperature
  • 点击次数:
  • 论文类型:期刊论文
  • 发表时间:2015-04-01
  • 发表刊物:CATALYSIS SCIENCE & TECHNOLOGY
  • 收录刊物:SCIE、EI、Scopus
  • 卷号:5
  • 期号:4
  • 页面范围:2227-2237
  • ISSN号:2044-4753
  • 摘要:Ozone catalytic oxidation (OZCO) for removing ammonia from simulated air over the AgMn/HZSM-5 (AgMn/HZ) catalyst with high ammonia conversion and high N-2 selectivity at room temperature is reported for the first time. HZ, Ag/HZ, Mn/HZ and AgMn/HZ catalysts were compared in the OZCO reactions of gaseous and adsorbed NH3. In OZCO of gaseous NH3, N-2 was the major product and N2O was the minor product. NH3 conversion dropped quickly with time-on-stream (TOS) over HZ and Ag/HZ catalysts while it remained almost constant at a high level over Mn/HZ and AgMn/HZ catalysts during the entire test. N-2 selectivity of the AgMn/HZ catalyst was higher than that of the Mn/HZ catalyst. When the initial concentration of NH3 was 521 ppmv and the ratio of initial concentration of O-3 to NH3 was 1.73, 99% NH3 conversion with 94% N-2 selectivity was obtained over the AgMn/HZ catalyst at room temperature and 150000 ml g(-1) h(-1) gas hourly space velocity (GHSV). Finally, the pathways for OZCO of NH3 were proposed for the four catalysts based on the comparative investigation of the gaseous products and surface species during OZCO of adsorbed and gaseous NH3.
  • 发表时间:2015-04-01