已经得到个称赞     给我点赞
  • 教师姓名:朱晓兵
  • 性别:
  • 电子邮箱:xzhu@dlut.edu.cn
  • 职称:副教授
  • 所在单位:化工海洋与生命学院
  • 学位:博士
  • 学科:化学工程. 物理化学
  • 毕业院校:中科院大连化学物理研究所
  • 曾获荣誉:辽宁省第二批“十百千高端人才引进工程”“百人”层次
  • 办公地点:大连理工大学氢能与环境催化中心、等离子体物理化学实验室
    Center for Hydrogen Energy and Environmental Catalysis, Laboratory of Plasma Physical Chemistry
    Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
论文成果
当前位置: 中文主页 >> 科学研究 >> 论文成果 >> 空气源电化学连续... >>同专业硕导
空气源电化学连续分离制氧(Ⅰ):单池性能优化
  • 点击次数:
  • 论文类型:期刊论文
  • 发表时间:2016-01-20
  • 发表刊物:化工学报
  • 收录刊物:EI、PKU、ISTIC、CSCD
  • 卷号:5
  • 期号:5
  • 页面范围:2022-2032
  • ISSN号:0438-1157
  • 关键字:制氧;质子交换膜燃料电池;固体聚合物电解质电解池;电化学;分离;优化
  • 摘要:随着工业化进程高速发展,尤其受近期"雾霾"的影响,大气环境质量越来越受重视.空气中氧气补给是提高空气质量的关键方法之一.相对于传统制氧技术(如空气物理分离法、化学法以及水电解法等),空气源电化学连续分离制纯氧技术具有空气源分离制纯氧、能量效率高、连续运行、环境友好、安静、易规模放大等特点,可实现室内外场合应用.该技术的关键部件是质子交换膜燃料电池和固体聚合物电解质电解池(简称燃料电池和电解池).分别考察了其单池操作条件对性能的影响,如燃料电池的操作温度、相对湿度、气体利用率和压强,以及电解池的供水方式、循环水流速、操作温度等.测试了燃料电池单池极化曲线、电化学交流阻抗谱,并计算了膜电导率和活化能.对极化曲线进行拟合得出塔菲尔(Tafel)斜率、氧还原反应交换电流密度i0以及传质影响参数m、n等基本动力学参数.结果表明,氢空燃料电池单池最优化条件为:常压条件下,操作温度为60℃,峰值功率密度可达0.42 W·cm?2,膜面电阻为77 m?·cm2,膜电导率为41.4 mS·cm?1.Tafel斜率受温度影响较小,在120 mV·dec?1左右,但受相对湿度影响较大.相对湿度对单池性能影响显著.电解池单池最优化操作条件为:操作温度对性能影响较大且最佳为65℃,膜面电阻为1.08?·cm2,膜电导率为11.7 mS·cm?1.循环水流速对性能影响较小.供水方式的优劣次序为两极供水≈阳极供水>阴极供水.在上述实验条件下,燃料电池中Nafion?211膜和电解池中Nafion?115膜的活化能计算值分别为3.75和4.61 kJ·mol?1.基于燃料电池和电解池的单池电化学性能优化,研究结果可为后续的制氧机系统中电池堆的实施提供实验依据.
  • 发表时间:2016-01-20