扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 叶昕辰 ( 副教授 )

    的个人主页 http://faculty.dlut.edu.cn/yexinchen/zh_CN/index.htm

  •   副教授   博士生导师   硕士生导师
  • 主要任职:IEEE member, ACM member
  • 其他任职:IEEE协会会员, ACM协会会员, CCF计算机协会会员
Sup. Mono. DE (PR'21) 当前位置: 中文主页 >> 论文及项目 >> Sup. Mono. DE (PR'21)




DPNet: Detail-Preserving Network for High Quality Monocular Depth Estimation


Xinchen Ye1*, Shude Chen1,  Rui Xu1

1 Dalian University of Technology

* Corresponding author


Paper: PR2021.pdf




Abstract

Existing monocular depth estimation methods are unsatisfactory due to the inaccurate inference of depth details and the loss of spatial information. In this paper, we present a novel detail-preserving network (DPNet), i.e., a dual-branch network architecture that fully addresses the above problems and facilitates the depth map inference. Specifically, in contextual branch (CB), we propose an effective and efficient nonlocal spatial attention module by introducing non-local filtering strategy to explicitly exploit the pixel relationship in spatial domain, which can bring significant promotion on depth details inference. Mean- while, we design a spatial branch (SB) to preserve the spatial information and generate high-resolution features from input color image. A refinement module (RM) is then proposed to fuse the heterogeneous features from both spatial and contextual branches to obtain a high quality depth map. Experimental results show that the proposed method outperforms SOTA methods on benchmark RGB-D datasets.

Index Terms— Depth Estimation, CNN, Depth Prediction, Depth Enhancement, Monocular



Method


屏幕截图 2021-03-17 095036.png

屏幕截图 2021-03-17 095020.png



Publications

[1] Xinchen Ye*, Shude Chen, Rui Xu, DPNet: Detail-Preserving Network for High Quality Monocular Depth Estimation, Pattern Recognition, 109:107578, 2021.

[2] Xiangyue Duan, Xinchen Ye*, Yang Li, Haojie Li, High Quality Depth Estimation from Monocular Images Based on Depth Prediction and Enhancement Sub-Networks. IEEE International Conference onMultimedia and Expo, ICME 2018, San Diego, USA. (CCF-B)




辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学