location: Current position: Yin Wang Space >> Scientific Research >> Paper Publications

A numerical study of wall pressure and granular flow in a flat-bottomed silo

Hits:

Indexed by:期刊论文

Date of Publication:2015-09-01

Journal:UK-China International Particle Technical Forum IV Conference

Included Journals:SCIE、EI、CPCI-S、Scopus

Volume:282

Issue:,SI

Page Number:43-54

ISSN No.:0032-5910

Key Words:Finite element modelling; Arbitrary Lagrangian-Eulerian formulation (ALE); Wall pressure; Granular flow

Abstract:This paper presents a numerical study of the granular flow in the discharge of a flat-bottomed model silo. The behaviour of the stored granular material is modelled using the finite element (FE) method based on an Arbitrary Lagrangian-Eulerian (ALE) frame of reference, which has shown advantageous performance over the classical FE methods in simulating the silo filling and discharge process in a series of studies leading up to this investigation. Experimental results have been used to validate the computational model using the ALE technique. The spatial distribution and time history of the pressures acting on the vertical silo walls predicted by the FE model are found to resemble well the test results. A semi-mass flow pattern has been predicted by the numerical model, which is very consistent with the corresponding experimental observation. With the validated numerical model, the flow behaviour specifically under a flat-bottomed geometry of silos is examined. Based on the velocity distribution in the granular material, a critical velocity ratio criterion is proposed and used to identify the flow channel boundary. A further numerical study has shown that the flow behaviour in the flat-bottomed silo is closely related to the shear strength of the material, which is represented by the internal friction angle for the cohesionless sand considered in the present study. (C) 2015 Elsevier B.V. All rights reserved.

Pre One:吸力式筒形基础沉贯过程的大变形有限元模拟

Next One:Finite element modelling of wall pressures in a cylindrical silo with conical hopper using an Arbitrary Lagrangian-Eulerian formulation