副教授 博士生导师 硕士生导师
性别: 男
毕业院校: 英国伦敦大学学院
学位: 博士
所在单位: 水利工程系
办公地点: 海岸和近海工程国家重点实验室
联系方式: 84708520转8403
电子邮箱: chongweizhang@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2018-04-01
发表刊物: RENEWABLE ENERGY
收录刊物: SCIE、EI、Scopus
卷号: 118
页面范围: 955-964
ISSN号: 0960-1481
关键字: Wave energy; Wave diffraction; Artificial upwelling; Potential flow theory; Submerged tubular structure
摘要: A submerged tubular wave energy converter, whose main structure is an upright concentric circular cylinder, is proposed. The turbine is installed near the bottom of the internal tunnel for the survivability consideration. The analytical solution for the wave diffraction problem of the structure is derived based on the linear potential flow theory. The oscillatory mass flow rate in the tunnel is particularly investigated for it can be used to assess the feasibility of the converter that utilises the vertically oscillatory water flow. The effect of the submerged tubular structure in a wave field is to guide the vertically oscillatory motion, the magnitude of which, otherwise, diminishes exponentially with depth, down to the deeper water. That greatly increases the available kinetic energy for the turbine installed in the deep water. Effects of the parameters of the tubular structure on the efficiency of the device are also discussed. (C) 2017 Elsevier Ltd. All rights reserved.