• 更多栏目

    亢战

    • 教授     博士生导师   硕士生导师
    • 主要任职:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
    • 其他任职:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
    • 性别:男
    • 毕业院校:stuttgart大学
    • 学位:博士
    • 所在单位:力学与航空航天学院
    • 学科:工程力学. 计算力学. 航空航天力学与工程. 固体力学
    • 办公地点:综合实验一号楼522房间
      https://orcid.org/0000-0001-6652-7831
      http://www.ideasdut.com
      https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
    • 联系方式:zhankang#dlut.edu.cn 84706067
    • 电子邮箱:zhankang@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Structural topology optimization with minimum distance control of multiphase embedded components by level set method

    点击次数:

    论文类型:期刊论文

    发表时间:2016-07-01

    发表刊物:COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING

    收录刊物:SCIE、EI

    卷号:306

    页面范围:299-318

    ISSN号:0045-7825

    关键字:Topology optimization; Level set; Integrated design; Embedded component; Minimum distance control; Virtual boundary offset

    摘要:This paper presents a novel topology optimization method for designing structures with multiphase embedded components under minimum distance constraints in the level set framework. By using the level set representation for both the component layout and the host structure topology, the shapes of the components can be easily preserved, and optimal structural topologies with smooth boundary/material interface can be obtained. With the purpose of preventing the components moving too close to each other, a minimum distance constraint based on virtual boundary offset is proposed. Different from existing distance detection methods relying on explicit topology representation, the proposed constraint is imposed as a unified integral form, for which the design sensitivity can be readily obtained. Moreover, this constraint is effective for detecting the distance between any complex-shaped components. Several numerical examples are presented to demonstrate the validity and effectiveness of the proposed method. (C) 2016 Elsevier B.V. All rights reserved.