• 更多栏目

    亢战

    • 教授     博士生导师   硕士生导师
    • 主要任职:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
    • 其他任职:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
    • 性别:男
    • 毕业院校:stuttgart大学
    • 学位:博士
    • 所在单位:力学与航空航天学院
    • 学科:工程力学. 计算力学. 航空航天力学与工程. 固体力学
    • 办公地点:综合实验一号楼522房间
      https://orcid.org/0000-0001-6652-7831
      http://www.ideasdut.com
      https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
    • 联系方式:zhankang#dlut.edu.cn 84706067
    • 电子邮箱:zhankang@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Construction and application of an ellipsoidal convex model using a semi-definite programming formulation from measured data

    点击次数:

    论文类型:期刊论文

    发表时间:2016-03-01

    发表刊物:COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING

    收录刊物:SCIE、EI

    卷号:300

    页面范围:461-489

    ISSN号:0045-7825

    关键字:Bounded uncertainty; Non-probabilistic model; Convex model; SDP; Structural reliability; Reliability-based topology optimization

    摘要:As a set theory-based convex model, the ellipsoidal model provides an attractive framework for treating uncertain-but-bounded variations in the structural reliability analysis and design optimization. However, improper modeling of the uncertainties may give rise to misleading non-probabilistic reliability analysis, thus result in either unsafe or over-conservative designs. This paper presents a systematic study on the mathematical formulation for constructing the minimum-volume ellipsoidal convex model using a given set of sample data, and shows its application in existing methods of non-probabilistic reliability analysis and design optimization of structures with bounded uncertainties. In this method, the uncertain parameters are first divided into groups according to their sources. For each individual group of uncertainties, the minimum-volume ellipsoid problem is reformulated into a semi-definite programming (SDP) problem and thus can be efficiently solved to its global optimum. Further, a linear transformation based on the eigenvalue analysis is employed to map the ellipsoidal model into a standard uncertainty space. This uncertainty modeling technique enables a compact and differentiable bound description of the parameter variations. Moreover, it has another useful property, the affine invariance, which is shown to be necessary for meaningful definition of a non-probabilistic reliability index. The effectiveness and efficiency of the present techniques for convex model construction and the corresponding reliability analysis are demonstrated with numerical examples of structural topology optimization problems with bounded variations arising from different sources. (C) 2015 Elsevier B.V. All rights reserved.