• 更多栏目

    亢战

    • 教授     博士生导师   硕士生导师
    • 主要任职:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
    • 其他任职:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
    • 性别:男
    • 毕业院校:stuttgart大学
    • 学位:博士
    • 所在单位:力学与航空航天学院
    • 学科:工程力学. 计算力学. 航空航天力学与工程. 固体力学
    • 办公地点:综合实验一号楼522房间
      https://orcid.org/0000-0001-6652-7831
      http://www.ideasdut.com
      https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
    • 联系方式:zhankang#dlut.edu.cn 84706067
    • 电子邮箱:zhankang@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Design of two-dimensional horseshoe layout for stretchable electronic systems

    点击次数:

    论文类型:期刊论文

    发表时间:2013-12-01

    发表刊物:JOURNAL OF MATERIALS SCIENCE

    收录刊物:SCIE、EI、Scopus

    卷号:48

    期号:24

    页面范围:8443-8448

    ISSN号:0022-2461

    摘要:Using appropriate layout in the design of the stretchable electronics is very important, since the optimized layout is capable of making the electronic system stretchable and maintaining the electrical performance and structural reliability. In this paper, a unit cell model with periodic boundary condition is proposed to investigate the stretchability and optimize the structure of the stretchable electronic systems with the 2D "horseshoe" layout. Unlike the monotonous trends in the cases of the "wavy", "mesh", and 1D "horseshoe" layout, each impact factor (metal wire thickness, metal wire width, eccentric angle) has an optimized value for the stretchability to reach its maximum. To comprehensively investigate the influence of these impact factors on the stretchability, we employ the response surface method and obtain the quadratic response surface function to mathematically explore the relationship between these impact factors and the stretchability of interest. The response surface method proposes an optimal design of the 2D "horseshoe" layout for the maximum stretchability, which agrees well with the finite element simulations results. The findings here provide a more programmable scheme and can be useful in formulating designs for the stretchable electronic systems.