• 更多栏目

    亢战

    • 教授     博士生导师   硕士生导师
    • 主要任职:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
    • 其他任职:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
    • 性别:男
    • 毕业院校:stuttgart大学
    • 学位:博士
    • 所在单位:力学与航空航天学院
    • 学科:工程力学. 计算力学. 航空航天力学与工程. 固体力学
    • 办公地点:综合实验一号楼522房间
      https://orcid.org/0000-0001-6652-7831
      http://www.ideasdut.com
      https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
    • 联系方式:zhankang#dlut.edu.cn 84706067
    • 电子邮箱:zhankang@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    An adaptive method for high-resolution topology design

    点击次数:

    论文类型:期刊论文

    发表时间:2013-12-01

    发表刊物:ACTA MECHANICA SINICA

    收录刊物:SCIE、EI、ISTIC、CSCD、Scopus

    卷号:29

    期号:6

    页面范围:840-850

    ISSN号:0567-7718

    关键字:Topology optimization; Adaptive method; High resolution; Nodal design variable; Penalization factor adaptivity

    摘要:For the purpose of achieving high-resolution optimal solutions this paper proposes a nodal design variable-based adaptive method for topology optimization of continuum structures. The analysis mesh-independent density field, interpolated by the nodal design variables at a given set of density points, is adaptively refined/coarsened according to a criterion regarding the gray-scale measure of local regions. New density points are added into the gray regions and redundant ones are removed from the regions occupied by purely solid/void phases for decreasing the number of design variables. A penalization factor adaptivity technique is employed to prevent premature convergence of the optimization iterations. Such an adaptive scheme not only improves the structural boundary description quality, but also allows for sufficient further topological evolution of the structural layout in higher adaptivity levels and thus essentially enables high-resolution solutions. Moreover, compared with the case with uniformly and finely distributed density points, the proposed adaptive method can achieve a higher numerical efficiency of the optimization process.