程春田

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:水利工程系

学科:水文学及水资源. 水利水电工程. 电力系统及其自动化. 计算机应用技术

联系方式:ctcheng@dlut.edu.cn

电子邮箱:ctcheng@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series

点击次数:

论文类型:期刊论文

发表时间:2009-08-15

发表刊物:JOURNAL OF HYDROLOGY

收录刊物:SCIE、EI、ESI高被引论文

卷号:374

期号:3-4

页面范围:294-306

ISSN号:0022-1694

关键字:Monthly discharge time series forecasting; ARMA; ANN; ANFIS; GP; SVM

摘要:Developing a hydrological forecasting model based on past records is crucial to effective hydropower reservoir management and scheduling. Traditionally, time series analysis and modeling is used for building mathematical models to generate hydrologic records in hydrology and water resources. Artificial intelligence (AI), as a branch of computer science, is capable of analyzing long-series and large-scale hydrological data. In recent years, it is one of front issues to apply AI technology to the hydrological forecasting modeling. In this paper, autoregressive moving-average (ARMA) models, artificial neural networks (ANNs) approaches, adaptive neural-based fuzzy inference system (ANFIS) techniques, genetic programming (GP) models and support vector machine (SVM) method are examined using the long-term observations of monthly river flow discharges. The four quantitative standard statistical performance evaluation measures, the coefficient of correlation (R), Nash-Sutcliffe efficiency coefficient (E), root mean squared error (RMSE), mean absolute percentage error (MAPE), are employed to evaluate the performances of various models developed. Two case study river sites are also provided to illustrate their respective performances. The results indicate that the best performance can be obtained by ANFIS, GP and SVM, in terms of different evaluation criteria during the training and validation phases. (C) 2009 Elsevier B.V. All rights reserved.