彭孝军

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:Director, State Key laboratory of Fine Chemicals

其他任职:精细化工国家重点实验室主任、国务院学科评议组成员

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

学科:应用化学. 精细化工. 化学生物学

办公地点:大连理工大学精细化工国家重点实验室
西部校区化工实验楼F-202#  
http://peng-group.dlut.edu.cn/

联系方式:大连理工大学精细化工国家重点实验室 西部校区化工实验楼F-202 辽宁省大连市高新区凌工路2号,大连116024 Tel: 0411-84986306; Fax: 0411-84986292;课题组网址:http://peng-group.dlut.edu.cn/

电子邮箱:pengxj@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Metabolic changes in primary, secondary, and lipid metabolism in tobacco leaf in response to topping

点击次数:

论文类型:期刊论文

发表时间:2018-01-01

发表刊物:ANALYTICAL AND BIOANALYTICAL CHEMISTRY

收录刊物:Scopus、SCIE、EI、PubMed

卷号:410

期号:3

页面范围:839-851

ISSN号:1618-2642

关键字:Topping; Tobacco leaf; Metabolomics; Liquid chromatography-mass spectrometry; Gas chromatography-mass spectrometry; Capillary electrophoresis-mass spectrometry

摘要:As an important cultivation practice used for flue-cured tobacco, topping affects diverse biological processes in the later stages of development and growth. Some studies have focused on using tobacco genes to reflect the physiological changes caused by topping. However, the complex metabolic shifts in the leaf resulting from topping have not yet been investigated in detail. In this study, a comprehensive metabolic profile of primary, secondary, and lipid metabolism in flue-cured tobacco leaf was generated with use of a multiple platform consisting of gas chromatography-mass spectrometry, capillary electrophoresis-mass spectrometry, and liquid chromatography-mass spectrometry/ultraviolet spectroscopy. A total of 367 metabolites were identified and determined. Both principal component analysis and the number of significantly different metabolites indicated that topping had the greatest influence on the upper leaves. During the early stage of topping, great lipid level variations in the upper leaves were observed, and antioxidant defense metabolites were accumulated. This indicated that the topping activated lipid turnover and the antioxidant defense system. At the mature stage, lower levels of senescence-related metabolites and higher levels of secondary metabolites were found in the topped mature leaves. This implied that topping delayed leaf senescence and promoted secondary metabolite accumulation. This study provides a global view of the metabolic perturbation in response to topping.