个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:Director, State Key laboratory of Fine Chemicals
其他任职:精细化工国家重点实验室主任、国务院学科评议组成员
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:化工学院
学科:应用化学. 精细化工. 化学生物学
办公地点:大连理工大学精细化工国家重点实验室
西部校区化工实验楼F-202#
http://peng-group.dlut.edu.cn/
联系方式:大连理工大学精细化工国家重点实验室 西部校区化工实验楼F-202 辽宁省大连市高新区凌工路2号,大连116024 Tel: 0411-84986306; Fax: 0411-84986292;课题组网址:http://peng-group.dlut.edu.cn/
电子邮箱:pengxj@dlut.edu.cn
Fine-tailoring the linker of near-infrared fluorescence probes for nitroreductase imaging in hypoxic tumor cells
点击次数:
论文类型:期刊论文
发表时间:2017-10-01
发表刊物:CHINESE CHEMICAL LETTERS
收录刊物:SCIE、Scopus
卷号:28
期号:10,SI
页面范围:1997-2000
ISSN号:1001-8417
关键字:Hypoxia; Fluorescence probes; Nitroreductase; Near-infrared; Aminocyanine dyes
摘要:Imaging hypoxia using fluorescence probes for nitroreductase (NTR) have attracted much attention in last decade. At least three different linkers have been commonly used to connect the recognition unit and reporting unit in reported probes for NTR. Meanwhile, the linker is known to be a key factor for achieving best sensing performance. In this work, three near-infrared fluorescence probes CyNP-1, CyNP-2 and CyNP-3 were designed and synthesized from an aminocyanine dye CyNP. The three probes have the same recognition unit and same fluorescence reporting unit, but different linkers. CyNP-1 was found to have the best sensing performance for NTR with 40-fold of fluorescence enhancement. It is well investigated how the difference of the linkers brings out the different sensing performance by HPLC, MS and docking calculations. In the end, CyNP-1 was found to have good selectivity for NTR and used to imaging hypoxia in Hela cells. (C) 2017 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.