彭孝军

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:Director, State Key laboratory of Fine Chemicals

其他任职:精细化工国家重点实验室主任、国务院学科评议组成员

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

学科:应用化学. 精细化工. 化学生物学

办公地点:大连理工大学精细化工国家重点实验室
西部校区化工实验楼F-202#  
http://peng-group.dlut.edu.cn/

联系方式:大连理工大学精细化工国家重点实验室 西部校区化工实验楼F-202 辽宁省大连市高新区凌工路2号,大连116024 Tel: 0411-84986306; Fax: 0411-84986292;课题组网址:http://peng-group.dlut.edu.cn/

电子邮箱:pengxj@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

In situ imaging of aminopeptidase N activity in hepatocellular carcinoma: a migration model for tumour using an activatable two-photon NIR fluorescent probe

点击次数:

论文类型:期刊论文

发表时间:2019-02-14

发表刊物:CHEMICAL SCIENCE

收录刊物:PubMed、SCIE

卷号:10

期号:6

页面范围:1619-1625

ISSN号:2041-6520

关键字:Biocompatibility; Cells; Charge transfer; Cytology; Diseases; Fluorescence; Infrared devices; Molecular imaging; Photons; Probes; Tumors, Fluorescent probes; Hepatocellular carcinoma; Hepatocellular carcinoma cell; Intramolecular charge transfers; Metalloproteinases; Near-infrared fluorescence; Threedimensional (3-d); Two-photon excitations, Diagnosis

摘要:CD13/aminopeptidase N (APN), which is a zinc-dependent metalloproteinase, plays a vital role in the growth, migration, angiogenesis, and metastasis of tumours. Thus, in situ molecular imaging of endogenous APN levels is considerably significant for investigating APN and its different functions. In this study, a novel two-photon near-infrared (NIR) fluorescence probe DCM-APN was prepared to perform in vitro and in vivo tracking of APN. The N-terminal alanyl site of probe DCM-APN was accurately hydrolysed to the amino group, thereby liberating strong fluorescence owing to the recovery of the Intramolecular Charge Transfer (ICT) effect. By considering its outstanding selectivity, ultra-sensitivity (DL 0.25 ng mL(-1)) and favourable biocompatibility, the probe DCM-APN was used to distinguish between normal cells (LO2 cells) and cancer cells (HepG-2 and B16/BL6 cells). Furthermore, migration of hepatocellular carcinoma cells was apparently inhibited by ensuring that the APN catalytic cavity was occupied by bestatin. The identification of three-dimensional (3D) fluorescence in cancer tissues was completed under two-photon excitation coupled with lighting up hepatocellular carcinoma tumours in situ; this revealed that probe DCM-APN is an effective tool for detecting APN, thereby assisting in the early diagnosis of tumour in clinical medicine.