彭孝军

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:Director, State Key laboratory of Fine Chemicals

其他任职:精细化工国家重点实验室主任、国务院学科评议组成员

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

学科:应用化学. 精细化工. 化学生物学

办公地点:大连理工大学精细化工国家重点实验室
西部校区化工实验楼F-202#  
http://peng-group.dlut.edu.cn/

联系方式:大连理工大学精细化工国家重点实验室 西部校区化工实验楼F-202 辽宁省大连市高新区凌工路2号,大连116024 Tel: 0411-84986306; Fax: 0411-84986292;课题组网址:http://peng-group.dlut.edu.cn/

电子邮箱:pengxj@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Spectroscopic approach for the interaction of carbon nanoparticles with cytochrome c and BY-2 cells: Protein structure and mitochondrial function

点击次数:

论文类型:期刊论文

发表时间:2019-10-01

发表刊物:INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES

收录刊物:PubMed、SCIE

卷号:138

页面范围:29-36

ISSN号:0141-8130

关键字:Carbon nanopartides; Cytochrome c; Conformation; Redox potential; Mitochondrial function

摘要:In this study, we employed multiple spectroscopic methods to analyze the effects of carbon nanoparticles (CNPs) on structure of cytochrome c (Cyt c) and mitochondrial function in plant cells. The tertiary structures of aromatic amino acid in Cyt c were not changed after addition of CNPs. Cyt c was found to be absorbed on the surfaces of CNPs in a non-linear manner and only bound Cyt c can be reduced. In addition, the binding of Cyt c was found to increase the diameter of CNPs at lower concentrations. The redox potential of Cyt c was almost not affected after treatment with CNPs. There were no obvious differences in cellular ATP after exposure to CNPs, and the mitochondrial membrane potential (MMP) was significantly decreased once the CNPs concentration exceeded 31.25 mu g/mL. The levels of reactive oxygen species (ROS) also were increased in BY-2 cells. Taken together, these findings provide basis for the interactions between CNPs and Cyt c, as well as the effect of CNPs treatment on the mitochondria function in plant cells. (C) 2019 Published by Elsevier B.V.