Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Title : Director of R & D Center of Membrane Science and Technology
Title of Paper:Effect of water in ionic liquid on the separation performance of supported ionic liquid membrane for CO2/N-2
Hits:
Date of Publication:2010-03-15
Journal:JOURNAL OF MEMBRANE SCIENCE
Included Journals:SCIE
Volume:350
Issue:1-2
Page Number:279-285
ISSN No.:0376-7388
Key Words:Ionic liquid; Supported liquid membrane; Carbon dioxide; [bmim][BF4]; Water content
Abstract:The effect of water content in 1-n-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) on CO2/N-2 separation performance of polyethersulfone supported ionic liquid membrane has been investigated theoretically and experimentally. A small addition of water in [bmim][BF4] obviously improves the performance of the membrane. CO2 permeance increases from 11.5 to 13.8 GPU and CO2/N-2 selectivity increases from 50 to 60, where the water molar fraction increases from 0 to 0.10 at the cross-membrane pressure difference of 0.24 MPa. The improvement of the CO2 permeance at low water content can be attributed to the increase of CO2 diffusivity due to the decrease of viscosity with increasing the water content. While, the CO2 permeance decreases at high water content because of the decreasing CO2 solubility, which is mainly caused by the hydrogen bond interaction between water and [bmim][BF4]. A corrected solubility coefficient model of CO2 in ionic liquid is proposed to evaluate the influence of water-[bmim][BF4] interaction on CO2 solubility. The comparison of CO2 permeance between theoretical values and experimental ones demonstrates that the number of water molecule bound to a [BF4](-) is between 1 and 2 in the range of the water content in our research. (C) 2010 Elsevier B.V. All rights reserved.
Open time:..
The Last Update Time: ..