王立成
开通时间:..
最后更新时间:..
点击次数:
论文类型:会议论文
发表时间:2016-06-30
收录刊物:EI
页面范围:51-56
摘要:Both the hardening process and formation of microstructure of concrete are significantly influenced by the curing condition. The capillary absorption of concrete is closely related to the structure and distribution of the pores within the material. This paper presents an experimental study on the influence of four curing conditions, i.e., standard curing, natural curing, water curing, and sealed curing, on the capillary absorption of normal concrete. Compressive strength tests on the cylinder specimens that are core drilled from concrete slabs are carried out. The 'pie' samples cut from three different locations along the height direction of cylinder specimens are then conducted to measure the ultrasonic pulse velocity (UPV) and porosity, which quantitatively characterize the internal state of concrete after 28 days initial curing. In order to realize the continuous observation of water absorption testing, an improved gravimetrical test setup for measuring the sorptivity (the rate of water absorption) of concrete is designed to investigate capillary absorption of the 'pie' samples. The experimental results indicate that the curing condition has an important influence on compressive strength, ultrasonic pulse velocity, and porosity of concrete. The temperature and relative humidity are the key factors to ensure strength development during the curing procedure and to determine the internal pore structure and the compactness of concrete. For the same curing conditions, the cumulative water content, sorptivity, and porosity of concrete gradually decrease with the increase of distance from the surface, but the ultrasonic pulse velocity reverses.