个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:材料科学与工程学院
办公地点:材料馆332
联系方式:15641188312
电子邮箱:htma@dlut.edu.cn
Study of Three-Dimensional Small Chip Stacking Using Low Cost Wafer-Level Micro-bump/B-Stage Adhesive Film Hybrid Bonding and Via-Last TSVs
点击次数:
论文类型:期刊论文
发表时间:2018-12-01
发表刊物:JOURNAL OF ELECTRONIC MATERIALS
收录刊物:SCIE、Scopus
卷号:47
期号:12
页面范围:7544-7557
ISSN号:0361-5235
关键字:3D IC; micro-bump; B-stage adhesive film; wafer-level hybrid bonding; via-last TSVs
摘要:Three-dimensional (3-D) small chip stacking using low cost wafer-level insert-bump hybrid bonding and via-last TSVs is proposed and investigated. The proposed hybrid bonding method realized by micro Cu pillar solder bumps and photo-patternable B-stage adhesive film has been successfully applied to an 8 inch wafer with 86 +/- 255 gross dies and a bump pitch of 150 mu m. The complete process flow is successfully validated and a well electrical connectivity for the whole wafer is obtained. Two hybrid bonding approaches, i.e., "adhesive-first" hybrid bonding and "Cu pillar bump-first" hybrid bonding, are studied. A void-free hybrid bonding interface with a final gap between top chip and bottom chip lower than 30 mu m is achieved using the "Cu pillar bump-first" hybrid bonding approach. The interaction of SnAg solder with electroless Ni-P/immersion Au and electro Ni are investigated. Two types of interfacial compounds, i.e., Ni3Sn4 and P-rich Ni layer containing Sn atoms, are found. The via-last through silicon vias (TSVs) have a diameter of 40 mu m and a depth of 95 mu m. The results indicate that it is a promising method for 3-D integrated circuits stacking technology using hybrid bonding and via-last TSVs.