• 更多栏目

    王福吉

    • 教授     博士生导师   硕士生导师
    • 任职 : 辽宁省先进复合材料高性能制造重点实验室主任
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:机械工程学院
    • 学科:机械电子工程. 机械制造及其自动化
    • 办公地点:知方楼7059
    • 联系方式:办公电话:0411-84707743,qq:66894581
    • 电子邮箱:wfjsll@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Explicit Correlation Model of Multi-source Constraints for Re-design Parts with Complex Curved Surface

    点击次数:

    论文类型:期刊论文

    发表时间:2014-03-01

    发表刊物:CHINESE JOURNAL OF MECHANICAL ENGINEERING

    收录刊物:SCIE、EI、CSCD、Scopus

    卷号:27

    期号:2

    页面范围:385-391

    ISSN号:1000-9345

    关键字:multi-source constraints; surface re-design; performance associated surface; explicit correlation model

    摘要:In precision machining of complex curved surface parts with high performance, geometry accuracy is not the only constraint, but the performance should also be met. Performance of this kind of parts is closely related to the geometrical and physical parameters, so the final actual size and shape are affected by multiple source constraints, such as geometry, physics, and performance. These parts are rather difficult to be manufactured and new manufacturing method according to performance requirement is urgently needed. Based on performance and manufacturing requirements for complex curved surface parts, a new classification method is proposed, which divided the complex curved surface parts into two categories: surface re-design complex curved surface parts with multi-source constraints(PRCS) and surface unique complex curved surface parts with pure geometric constraints(PUCS). A correlation model is constructed between the performance and multi-source constraints for PRCS, which reveals the correlation between the performance and multi-source constraints. A re-design method is also developed. Through solving the correlation model of the typical part's performance-associated surface, the mapping relation between the performance-associated surface and the related removal amount is obtained. The explicit correlation model and the method for the corresponding related removal amount of the performance-associated surface are built based on the classification of surface re-design complex curved surface parts with multi-source constraints. Research results have been used in the actual processing of the typical parts such as radome, common bottom components, nozzle, et al., which shows improved efficiency and accuracy of the precision machining for the surface re-design parts with complex curved surface.