• 更多栏目

    王福吉

    • 教授     博士生导师   硕士生导师
    • 任职 : 辽宁省先进复合材料高性能制造重点实验室主任
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:机械工程学院
    • 学科:机械电子工程. 机械制造及其自动化
    • 办公地点:知方楼7059
    • 联系方式:办公电话:0411-84707743,qq:66894581
    • 电子邮箱:wfjsll@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Characteristics forecasting of hydraulic valve based on grey correlation and ANFIS

    点击次数:

    论文类型:期刊论文

    发表时间:2010-03-01

    发表刊物:EXPERT SYSTEMS WITH APPLICATIONS

    收录刊物:SCIE、EI

    卷号:37

    期号:2

    页面范围:1250-1255

    ISSN号:0957-4174

    关键字:Forecasting; Grey correlation analysis; Adaptive neuro-fuzzy system; Hydraulic valve

    摘要:Accurate prediction is crucial for the synthesis characteristics of the hydraulic valve in industrial production. A prediction method (G-ANFIS for short) based on grey correlation and adaptive neuro-fuzzy system (ANFIS) to forecast synthesis characteristics of hydraulic valve is devised and the utilizing of the method can help enterprises to decrease the repair rate and reject rate of the product. Grey correlation model is used first to get the main geometric elements affecting the synthesis characteristics of the hydraulic valve and thus simplifies the system forecasting model. Then use ANFIS to build a prediction model based on the above mentioned main geometric elements To illustrate the applicability and capability of the devised prediction method, a specific hydraulic valve production was used as a case study. The results demonstrate that the prediction method was applied successfully and could provide high accuracy. The method performed better than artificial neural networks (ANN) to forecast the synthesis characteristics of hydraulic valve. (C) 2009 Elsevier Ltd All rights reserved.