个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:船舶工程学院院长、党委副书记
其他任职:船舶工程学院院长
性别:男
毕业院校:新加坡国立大学
学位:博士
所在单位:船舶工程学院
学科:船舶与海洋结构物设计制造
办公地点:船舶工程学院(船池楼)313房间
联系方式:0411-84706985
电子邮箱:gyzhang@dlut.edu.cn
Analysis of acoustic radiation problems using the cell-based smoothed radial point interpolation method with Dirichlet-to-Neumann boundary condition
点击次数:
论文类型:期刊论文
发表时间:2019-11-01
发表刊物:ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS
收录刊物:EI、SCIE
卷号:108
页面范围:447-458
ISSN号:0955-7997
关键字:Acoustic radiation; Numerical methods; Cell-based smoothed radial point interpolation method (CSRPIM); Dirichlet-to-Neumann (DtN) condition
摘要:In this work, the cell-based smoothed radial point interpolation method (CSRPIM) with Dirichlet-to-Neumann (DtN) boundary condition is presented to resolve acoustic radiation problems. In the scheme of CSRPIM, additional virtual nodes are used in RPIM shape functions creation, which, together with the operation of cell-based gradient smoothing operation, enable the model provide proper stiffness for acoustic field without extra degrees of freedom. It is demonstrated that the present CSRPIM can reduce the dispersion error significantly and possess some superiorities, such as high accuracy and insensitivity to mesh distortion. For exterior acoustic problems, the well-known DtN artificial boundary has been employed to ensure that there are no spurious reflections from unbounded domain. Several numerical examples have been studied to verify the properties of the present CSRPIM with DtN condition. The results show that this CSRPIM is outstanding to tackle acoustic radiation problems and can generate more reasonable solutions than the standard FEM. Also, owing to the use of linear background mesh, the present method has a good potential to be applied to practical acoustic radiation engineering problems.