location: Current position: Home >> Scientific Research >> Paper Publications

基于迁移学习的类别级物体识别与检测研究与进展

Hits:

Indexed by:Journal Papers

Date of Publication:2018-12-18

Journal:自动化学报

Included Journals:PKU、EI

Volume:45

Issue:7

Page Number:1224-1243

ISSN No.:0254-4156

Key Words:迁移学习;物体识别;物体检测;小规模数据集;类不平衡数据集

Abstract:类别级物体识别与检测属于计算机视觉领域的一个基础性问题,主要研究在图像或视频流中识别和定位出其中感兴趣的物体.在基于小规模数据集的类别级物体识别与检测应用中,模型过拟合、类不平衡和跨领域时特征分布变化等关键问题与挑战交织在一起.本文介绍了迁移学习理论的研究现状,对迁移学习理论解决基于小规模数据集的物体识别与检测中遇到的主要问题的研究思路和前沿技术进行了着重论述和分析.最后对该领域的研究重点和技术发展趋势进行了探讨.

Pre One:Outdoor Scene Understanding Based on Multi-Scale PBA Image Features and Point Cloud Features

Next One:Scene Understanding and Semantic Mapping for Unmanned Ground Vehicles Using 3D Point Clouds