赵天怡

个人信息Personal Information

副教授

博士生导师

硕士生导师

主要任职:Deputy Director, Department of Civil Engineering, Dalian University of Technology

其他任职:APEC Energy Working Group Member, Member of APEC Expert Group on Energy Efficiency and Conservation (EGEE&C)

性别:男

毕业院校:哈尔滨工业大学

学位:博士

所在单位:土木工程系

学科:供热、供燃气、通风及空调工程

办公地点:厚兴楼417房间

联系方式:0411-84707734

电子邮箱:zhaotianyi@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

An engineering-oriented variable water flow air-conditioning system terminal flow rate estimation method based on component flow resistance characteristics

点击次数:

论文类型:期刊论文

发表时间:2021-06-13

发表刊物:ENERGY SCIENCE & ENGINEERING

卷号:9

期号:6

页面范围:843-854

ISSN号:2050-0505

关键字:end unit; error analysis; flow rate estimation; resistance; variable water flow air‐ conditioning system

摘要:Water flow rate plays an important role in the modeling prediction, fault detection and diagnosis, and performance optimization of the variable water flow air-conditioning (VWFAC) system. However, flowmeters employed by the system's terminals have not been widely used in engineering applications for the constraints in installation space and high installation and retrofit costs. Therefore, in this study, a terminal flow rate estimation method is proposed for the VWFAC system to reduce the dependency on flowmeters. The water flow rate estimation model is developed based on the flow resistance characteristics inside the air handling unit (AHU) and was trained and verified at the Monitoring and Control Laboratory established in the Dalian University of Technology. The results indicate that the maximum root-mean-square error (RMSE) during the training and validation sessions are 0.038 m(3)/h and 0.028 m(3)/h, respectively, while the corresponding mean absolute percentage error (MAPE) are below 1.4% and 6.5%, which is acceptable for engineering applications. To improve the flow rate estimation accuracy of the model, water temperature, water flow rate, and pressure difference are suggested to cover a wide varied range during the training session as much as possible. Systematic error is an important index in determining the demands for sensor's accuracy class. According to the results of water flow rate, the systematic errors of the estimates are ranged between 0.51% and 0.76%, only about 1/4 to 1/3 of the measurements systematic errors. Based on the error propagation theory, the water flow rate estimates would be reliable if the systematic error of the pressure measurements does not over twice that of the water flow rate measurements. This flow rate estimation method can be further applied to other thermal engineering systems to bring considerable economic benefits for engineering applications.