个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:机械工程学院
电子邮箱:guodm@dlut.edu.cn
Research on effects of slurry additives in CuCMP for ULSI manufacturing
点击次数:
论文类型:期刊论文
发表时间:2006-01-01
发表刊物:13th Conference on Abrasive Technology in China
收录刊物:SCIE、CPCI-S
卷号:304-305
页面范围:350-354
ISSN号:1013-9826
关键字:ULSI; copper CMP; slurry; additive
摘要:In this paper, in order to analyze the oxidation, dissolution and corrosive inhibition effects of additives in the slurry for copper Chemical-mechanical polishing(CMP), the slurry(pH5) with the peroxide as an oxidant, the citric acid as a complexing agent and the benzotriazole(BTA) as an inhibitor is studied. The static etching rate and polishing rate of the Cu-H2O2-Citric acid-BTA slurry are measured. The electrochemical behavior involved in the dissolution and corrosive inhibition of copper in the solutions containing additives is investigated by the electrochemical impedance spectroscopy (EIS) studies. The surface roughness is measured using ZYGO 3-D surface profiler. It is observed that when the slurry is with only 5wt% peroxide existing, copper is stable and slight etching rate on the copper is produced, and the etching rate is only 8.7nm/min. When 0.6wt% citric acid presents after adding 5wt% hydrogen peroxide, the etching rate will increase by 5.3 times, with a blue complexing product emerging. When the inhibitor BTA is added, the corrosion will be effectively restrained. From the EIS results, the impedance of copper in 5wt% peroxide solution which is in passivation can be greatly decreased by adding the citric acid as a complexing reagent. And the impedance of copper in the solution containing peroxide and citric acid can be increased by the addition of BTA. The surface roughness of the wafer polished with the slurry of 5wt% peroxide+0.6wt% citric acid+0.12wt% BTA slurry is Ra 4.7 angstrom.