个人信息Personal Information
副教授
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:控制科学与工程学院
电子邮箱:huangzx@dlut.edu.cn
Temperature-dependent thermal conductivity of bent carbon nanotubes by molecular dynamics simulation
点击次数:
论文类型:期刊论文
发表时间:2011-05-15
发表刊物:JOURNAL OF APPLIED PHYSICS
收录刊物:SCIE、EI
卷号:109
期号:10
ISSN号:0021-8979
摘要:Molecular dynamics simulations were performed to evaluate temperature-dependent thermal conductivity of bent carbon nanotubes. Thermal conductivities of bent nanotubes are predicted to be smaller than those of straight nanotubes. This is due to the suppression of high frequency phonons from the density of states calculations. It was found that for the defect-free bent nanotubes, the ratio of thermal conductivity of bent nanotubes to that of the straight ones are temperature and diameter independent, while significantly relies on the bent characteristic size. The more is the nanotube bent, the smaller is thermal conductivity obtained. For the larger nanotubes, the buckled defects were observed after bending and the ratio decrease rapidly. The ratios of thermal conductivity of the buckled nanotubes to that of the straight ones increase with the increasing temperatures until a maximum is obtained. (C) 2011 American Institute of Physics. [doi:10.1063/1.3592293]