扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 曹俊杰 ( 副教授 )

    的个人主页 http://faculty.dlut.edu.cn/jjcao/en/index.htm

  •   副教授   硕士生导师
论文成果 当前位置: jjcao >> 科学研究 >> 论文成果
Low-rank 3D mesh segmentation and labeling with structure guiding

点击次数:
论文类型:期刊论文
发表时间:2015-02-01
发表刊物:2014 Shape-Modeling-International Convention
收录刊物:SCIE、EI、CPCI-S
卷号:46
期号:,SI
页面范围:99-109
ISSN号:0097-8493
关键字:Semantic mesh segmentation; Labeling; Low-rank representation; Structure guiding
摘要:Semantic mesh segmentation and labeling is a fundamental problem in graphics. Conventional data-driven approaches usually employ a tedious offline pre-training process. Moreover, the number and especially the quality of the manually labeled examples challenge such strategies. In this paper, we develop a low-rank representation model with structure guiding to address these problems. The pre-training step is successfully eliminated and a test mesh can be labeled just using a few examples. As consistently labeling a large amount of meshes manually is a tedious procedure accompanied by inevitable mislabelings, our method is indeed more suitable for semantic mesh segmentation and labeling in real situations. In additional, by introducing the guiding from geometric similarity and labeling structure, and the robust l(2,1) norm, our method generates correct labeling, even when the set of given examples contains multiple object categories or mislabeled meshes. Experimental results on the Princeton Segmentation Benchmark show that our approach outperforms the existing learning based methods. (C) 2014 Elsevier Ltd. All rights reserved.

 

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学