扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 曹俊杰 ( 副教授 )

    的个人主页 http://faculty.dlut.edu.cn/jjcao/en/index.htm

  •   副教授   硕士生导师
论文成果 当前位置: jjcao >> 科学研究 >> 论文成果
Normal estimation via shifted neighborhood for point cloud

点击次数:
论文类型:期刊论文
发表时间:2018-02-01
发表刊物:Journal of Computational and Applied Mathematics
收录刊物:SCIE、EI、CPCI-S
卷号:329
页面范围:57-67
ISSN号:03770427
关键字:Normal estimation; Point cloud; Neighborhood shift
摘要:For accurately estimating the normal of a point, the structure of its neighborhood has to be analyzed. All the previous methods use some neighborhood centering at the point, which is prone to be sampled from different surface patches when the point is near sharp features. Then more inaccurate normals or higher computation cost may be unavoidable. To conquer this problem, we present a fast and quality normal estimator based on neighborhood shift. Instead of using the neighborhood centered at the point, we wish to locate a neighborhood containing the point but clear of sharp features, which is usually not centering at the point. Two specific neighborhood shift techniques are designed in view of the complex structure of sharp features and the characteristic of raw point clouds. The experiments show that our method out-performs previous normal estimators in either quality or running time, even in the presence of noise and anisotropic sampling. ? 2017 Elsevier B.V.

 

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学