扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 曹俊杰 ( 副教授 )

    的个人主页 http://faculty.dlut.edu.cn/jjcao/en/index.htm

  •   副教授   硕士生导师
论文成果 当前位置: jjcao >> 科学研究 >> 论文成果
A generalized nonlocal mean framework with object-level cues for saliency detection

点击次数:
论文类型:期刊论文
发表时间:2016-05-01
发表刊物:VISUAL COMPUTER
收录刊物:SCIE、EI、Scopus
卷号:32
期号:5
页面范围:611-623
ISSN号:0178-2789
关键字:Generalized nonlocal mean; Saliency detection; Objectness cue
摘要:Nonlocal mean (NM) is an efficient method for many low-level image processing tasks. However, it is challenging to directly utilize NM for saliency detection. This is because that conventional NM method can only extract the structure of the image itself and is based on regular pixel-level graph. However, saliency detection usually requires human perceptions and more complex connectivity of image elements. In this paper, we propose a novel generalized nonlocal mean (GNM) framework with the object-level cue which fuses the low-level and high-level cues to generate saliency maps. For a given image, we first use uniqueness to describe the low-level cue. Second, we adopt the objectness algorithm to find potential object candidates, then we pool the object measures onto patches to generate two high-level cues. Finally, by fusing these three cues as an object-level cue for GNM, we obtain the saliency map of the image. Extensive experiments show that our GNM saliency detector produces more precise and reliable results compared to state-of-the-art algorithms.

 

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学