扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 曹俊杰 ( 副教授 )

    的个人主页 http://faculty.dlut.edu.cn/jjcao/en/index.htm

  •   副教授   硕士生导师
论文成果 当前位置: jjcao >> 科学研究 >> 论文成果
Curvature-aware simplification for point-sampled geometry

点击次数:
论文类型:期刊论文
发表时间:2011-03-01
发表刊物:JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE C-COMPUTERS & ELECTRONICS
收录刊物:SCIE、EI
卷号:12
期号:3
页面范围:184-194
ISSN号:1869-1951
关键字:Point-sampled geometry; Particle simulation; Locally optimal projection; Simplification
摘要:We propose a novel curvature-aware simplification technique for point-sampled geometry based on the locally optimal projection (LOP) operator. Our algorithm includes two new developments. First, a weight term related to surface variation at each point is introduced to the classic LOP operator. It produces output points with a spatially adaptive distribution. Second, for speeding up the convergence of our method, an initialization process is proposed based on geometry-aware stochastic sampling. Owing to the initialization, the relaxation process achieves a faster convergence rate than those initialized by uniform sampling. Our simplification method possesses a number of distinguishing features. In particular, it provides resilience to noise and outliers, and an intuitively controllable distribution of simplification. Finally, we show the results of our approach with publicly available point cloud data, and compare the results with those obtained using previous methods. Our method outperforms these methods on raw scanned data.

 

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学