的个人主页 http://faculty.dlut.edu.cn/jjcao/en/index.htm
点击次数:
论文类型:期刊论文
发表时间:2014-12-15
发表刊物:计算机辅助设计与图形学学报
收录刊物:EI、PKU、ISTIC、CSCD、Scopus
卷号:26
期号:12
页面范围:2173-2181
ISSN号:1003-9775
关键字:图像去模糊;局部加权;全变差;模糊核估计;盲去卷积
摘要:图像去模糊是图像处理和分析中的基本问题之一,其本身是一个不适定问题,通常需要使用正则化方法来提高求解过程的稳定性.为了解决去运动模糊问题,从图像的局部特性出发,提出一种基于局部加权全变差(LWTV)的正则化方法,并给出了一种基于交替迭代的有效解法.针对非盲去卷积问题,为了克服传统全变差(TV)正则化方法的不足,以图像局部的变化信息为权值,在加大对图像中平坦区域的惩罚力度的同时,减小对图像中边缘区域的惩罚力度;针对模糊核估计问题,首先利用相对全变差(RTV)方法提取图像的显著性结构,然后利用显著性结构进行初步模糊核估计,再采用LWTV模型进行临时清晰图像估计,通过以上3步交替迭代获得最终的模糊核.实验结果表明,该方法可以在去除模糊及噪声的同时,很好地保持图像边缘并抑制振铃效应.