• 更多栏目

    武湛君

    • 教授     博士生导师   硕士生导师
    • 性别:男
    • 毕业院校:哈尔滨工业大学
    • 学位:博士
    • 所在单位:材料科学与工程学院
    • 学科:材料学. 材料无损检测与评价
    • 办公地点:材料馆320
    • 联系方式:wuzhj@dlut.edu.cn
    • 电子邮箱:wuzhj@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Liquid oxygen compatibility and cryogenic mechanical properties of a novel phosphorous/silicon containing epoxy- based hybrid

    点击次数:

    论文类型:期刊论文

    发表时间:2016-01-01

    发表刊物:RSC ADVANCES

    收录刊物:SCIE、EI

    卷号:6

    期号:93

    页面范围:91012-91023

    ISSN号:2046-2069

    摘要:A novel phosphorous/silicon containing epoxy-based hybrid was synthesized by 9,10-dihydro-9-oxa-10-phosphaphenanthrene- 10-oxide (DOPO) containing epoxy resin and 3-glycidoxy-propyltrimethoxysilane (GLYMO). It was compatible with liquid oxygen according to the liquid oxygen impact test. Furthermore, the hybrid possessed significantly enhanced thermal stability compared with the neat and DOPO containing epoxy resin and the silicon containing epoxy hybrid due to the phosphorous/silicon synergetic mechanism. It could be inferred that enhanced thermal stability had a positive effect on liquid oxygen compatibility. After one week of the liquid oxygen immersion test, the surface roughness of the hybrid changed less compared with that of the neat epoxy resin, implying the hybrid owned a higher crack resistance under cryogenic temperatures. Surface elemental content analysis showed that the hybrid possessed the lowest oxidative degree after the liquid oxygen impact test, proving that the phosphorous/silicon synergetic mechanism has worked on enhancing liquid oxygen compatibility. Besides, the incorporation of the DOPO and GLYMO prepolymers endowed the epoxy resin with improved ductility at both room temperature and 90 K, consequently leading to an increased fracture toughness. The above results lead to the conclusion that the synthesized hybrid has potential as the matrix material of composite liquid oxygen tanks.