徐向舟

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:清华大学

学位:博士

所在单位:水利工程系

学科:水文学及水资源

办公地点:116024 辽宁省 大连市 高新园区 凌工路2号
大连理工大学 实验3号楼 431

联系方式:电话: 86-411-84708946 传真: 86-411-84708946 E-mail: xzxu@dlut.edu.cn

电子邮箱:xzxu@dlut.edu.cn

扫描关注

论文成果

当前位置: Chinese homepage >> 科学研究 >> 论文成果

Exploring the influence of vegetation cover, sediment storage capacity and channel dimensions on stone check dam conditions and effectiveness in a large regulated river in Mexico

点击次数:

论文类型:期刊论文

发表时间:2018-10-15

发表刊物:ECOLOGICAL ENGINEERING

收录刊物:SCIE

卷号:122

页面范围:39-47

ISSN号:0925-8574

关键字:Vegetation cover; Watershed management; Check dam failure; Sediment wedge; Soil erosion

摘要:Check dams are widely used for soil conservation at the watershed scale. When structurally sound, these engineering control works retain sediment as planned. However, there is limited information describing the influence of site characteristics on post-construction condition including structural stability and sediment retention capacity. More specifically, the effects of channel morphology, check dam geometry and vegetation characteristics as potentially influencing factors on sediment retention capacity at the watershed level are poorly understood. Thus, an investigation applying field and remotely sensed measurements, multi-regression models, redundancy and sensitivity analysis, and correlation analysis was conducted in a Mexican watershed where the characteristics of 273 check dams were evaluated 3-5 years after construction. Vegetation cover and dimensions of the channel were found to be the most important factors influencing check dam fate. Taller structures experienced the greatest failure risk, in contrast to lower and wider structures and associated vegetation cover that retained long and wide sediment wedges, which helped to stabilise the check dams. The potential sediment storage capacity of the check dams mainly depends on the downstream height of the structure, but also on the vegetation cover near the structure walls; check dams constructed across a range of channel dimensions are able to effectively store sediment. Overall, this study provides a quantitative evaluation of the dominant factors influencing the post-construction conditions of check dams and their ability to store sediment, and thus provides land managers insights into the best strategies for soil conservation at the watershed scale using check dams.