个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:数学科学学院
学科:计算数学
办公地点:数学科学学院618
联系方式:cgzhu@dlut.edu.cn
电子邮箱:cgzhu@dlut.edu.cn
-
计算几何,计算机辅助几何设计,等几何分析
-
[1] 朱春钢, 李彩云,《数值逼近与计算几何》, 北京: 高等教育出版社, 2020. ISBN 978-7-04-054474-9, 42万字. Errata.pdf
[2] 王仁宏, 李崇君, 朱春钢, 《计算几何教程》, 科学计算及其软件教学丛书, 北京: 科学出版社, 2008. ISBN 978-7-03-021486-7, 45.6万字.
-
全部论文
代表性论文(2020年至今)
[1] Ye Ji*, Matthias Möllera, Yingying Yu, Chungang Zhu, Boundary parameter matching for isogeometric analysis using Schwarz–Christoffel mapping, Engineering with Computers, https://doi.org/10.1007/s00366-024-02020-z.
[2] Meng-Yun Wang, Ye Ji, Lin Lan, Chun-Gang Zhu*, MS-GIFT: Multi-Sided Geometry-Independent Field approximaTion approach for isogeometric analysis, Computer-Aided Design, special issue on SPM 2024, 173 (2024) 103731.
[3] Jingjing Yang, Chun-Gang Zhu*, An adaptive collocation method on implicit domains using weighted extended THB splines, Computer Aided Geometric Design, special issue on GMP 2024, 111 (2024) 102297.
[4] Yi Zhang, Ye Ji, Chun-Gang Zhu*, Multi-patch parameterization method for isogeometric analysis using singular structure of cross-field, Computers and Mathematics with Applications, 162 (2024) 61–78.
[5] Lin Lan, Ye Ji, Meng-Yun Wang, Chun-Gang Zhu*, Full-LSPIA: A least-squares progressive-iterative approximation method with optimization of weights and knots for NURBS curves and surfaces, Computer-Aided Design, 169 (2024) 103673.
[6] Meng-Yun Wang, Ye Ji, Chun-Gang Zhu*, Degree elevation and knot insertion for generalized Bézier surfaces and their application to isogeometric analysis, Journal of Computational Mathematics, doi:10.4208/jcm.2301-m2022-0116.
[7] Ying-Ying Yu, Ye Ji, Chun-Gang Zhu*, Sufficient condition for injectivity of NURBS volumes by tangent cones, Journal of Computational and Applied Mathematics, 432 (2023), 115303.
[8] Ye Ji, Meng-Yun Wang, Jing-Gai Li, Chun-Gang Zhu*, Curvature-based r-adaptive isogeometric analysis with injectivity-preserving multi-sided domain parameterization, Journal of Systems Science & Complexity, special issue on CM 2021, 36(1) (2023): 53–76.
[9] Pei Zhou, Chun-Gang Zhu*, Isogeometric collocation method based on residual parameterization of planar physical domain, Journal of Computational and Applied Mathematics, 422 (2023) 114889.
[10] Ye Ji, Meng-Yun Wang, Yu Wang and Chun-Gang Zhu*, Curvature-based r-adaptive planar NURBS parameterization method for isogeometric analysis using multi-level approach, Computer-Aided Design, special issue on SPM 2022, 150 (2022), Article 103305.
[11] Ye Ji, Meng-Yun Wang, Mao-Dong Pan, Yi Zhang and Chun-Gang Zhu*, Penalty function-based volumetric parameterization method for isogeometric analysis, Computer Aided Geometric Design, special issue on GMP 2022, 94(2022), Article 102081.
[12] Ye Ji, Jing-Gai Li, Ying-Ying Yu, Chun-Gang Zhu*, h-Refinement method for toric parameterization of planar multi-sided computational domain in isogeometric analysis, Computer Aided Geometric Design, 93 (2022), Article 102065.
[13] Ying-Ying Yu, Ye Ji, Jing-Gai Li, Chun-Gang Zhu*, Conditions for injectivity of toric volumes with arbitrary positive weights, Computers & Graphics, special issue on CAD/Graphics 2021 (Best Paper Award), 97 (2021), 88-98.
[14] Ye Ji, Ying-Ying Yu, Meng-Yun Wang, Chun-Gang Zhu*, Constructing high-quality planar NURBS parameterization for isogeometric analysis by adjustment control points and weights, Journal of Computational and Applied Mathematics, 396 (2021), Article 113615.
[15] Jing-Gai Li, Ye Ji, Chun-Gang Zhu*, De Casteljau algorithm and degree elevation of toric surface patches, Journal of System Sciences and Complexity, special issue on CM 2019, 34(1) (2021): 21–46.
[16] Xuefeng Zhu, Ye Ji, Chungang Zhu*, Ping Hu, Zheng-Dong Ma, Isogeometric analysis for trimmed CAD surfaces using multi-sided toric surface patches, Computer Aided Geometric Design, special issue on Computational Geometric Design, 79 (2020), Article 101847.
[17] Yan Wu, Chun-Gang Zhu*, Construction of triharmonic Bézier surfaces from boundary conditions, Journal of Computational and Applied Mathematics, 377 (2020), Article 112906.
[18] Ying-Ying Yu, Ye Ji, Chun-Gang Zhu*, An improved algorithm for checking the injectivity of 2D toric surface patches, Computers and Mathematics with Applications, 79 (10) (2020), 2973-2986.
- 面向等几何分析的高质量区域参数化理论与方法研究, 国家自然科学基金项目, 2024/08/23, 在研
- 面向中望龙腾几何建模引擎的NURBS曲面自交检测的新场景新技术攻关项目, 省、市、自治区科技项目, 2024/06/21, 在研
- 参数曲面/体的理论及其在等几何分析中的应用研究, 国家自然科学基金项目, 2020/09/18, 在研
- 参数曲线曲面的几何性质研究, 国家自然科学基金项目, 2016/08/17, 结题
- 分片代数簇的理论与应用研究, 主管部门科技项目, 2012/01/01-2014/03/01, 结题
- Toric曲面研究, 国家自然科学基金项目, 2012/09/25-2016/12/31, 结题